RMQGS-APS-Kriging-based Active Learning Structural Reliability Analysis Method
نویسندگان
چکیده
منابع مشابه
Sampling-Based RBDO Using the Dynamic Kriging (D-Kriging) Method and Stochastic Sensitivity Analysis
This study presents how to carry out RBDO when surrogate models are used to represent true performance functions. The Dynamic Kriging (D-Kriging) method is used to generate surrogate models, and stochastic sensitivity analysis is introduced to compute sensitivities of probabilistic constraints with respect to the design variables, which are the mean values of the input independent or correlated...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملModified Bayesian Kriging for Noisy Response Problems for Reliability Analysis
This paper develops a new modified Bayesian Kriging (MBKG) surrogate modeling method for problems in which simulation analyses are inherently noisy and thus standard Kriging approaches fail to properly represent the responses. The purpose is to develop a method that can be used to carry out reliability analysis to predict probability of failure. The formulation of the MBKG surrogate modeling me...
متن کاملPattern analysis by active learning method classifier
Active Learning Method (ALM) is a powerful fuzzy soft computing tool, developed originally in order to promote an engineering realization of human brain. This algorithm, as a macro-level brain imitation, has been inspired by some behavioral specifications of human brain and active learning ability. ALM is an adaptive recursive fuzzy learning algorithm, in which a complex Multi Input, Multi Outp...
متن کاملAN ADAPTIVE IMPORTANCE SAMPLING-BASED ALGORITHM USING THE FIRST-ORDER METHOD FOR STRUCTURAL RELIABILITY
Monte Carlo simulation (MCS) is a useful tool for computation of probability of failure in reliability analysis. However, the large number of samples, often required for acceptable accuracy, makes it time-consuming. Importance sampling is a method on the basis of MCS which has been proposed to reduce the computational time of MCS. In this paper, a new adaptive importance sampling-based algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jixie gongcheng xuebao
سال: 2022
ISSN: ['0577-6686']
DOI: https://doi.org/10.3901/jme.2022.16.420